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A Rule of Thumb for Binary Isotope Separations in a 
Gas Centrifuge 

M. H. BERGER* 
THEORY DEPARTMENT 
OPERATIONS ANALYSIS AND PLANNING DIVISION 
OAK RIDGE GASEOUS DIFFUSION PLANT 
OAK RIDGE. TENNESSEE 37830 

Abstract 

A simple hypothetical model of the binary isotope separation process in a 
modern countercurrent Gas Centrifuge is proposed. Like the usual Cohen- 
Onsager separation theory, internal fluid dynamics are obviously involved. But 
unlike that theory it completely obviates the flow integrals for Cohen’s E ,  thereby 
allowing an immediate estimate of the flow eficiency of a given design by visual 
inspection of the flow field. At times this should be checked later by the usual 
analyses. To shed some light on this idea, derivations for two simple assumed 
idealized hydrodynamics are given, but a rigorous proof remains an open 
question. Then our hypothesis is tested against a battery of about 10 new “exact” 
formulas for E based upon analytical solutions to several variants of Onsager’s 
pancake equation and is found to be “reasonably” accurate and surprisingly 
robust. Finally, some limitations of our rule are explored. 

INTRODUCTION 

Isotope separation theory is a fairly old subject, dating back to 
Onsager, Furry, Jones, Cohen, etc. ( I ) ,  and has changed little over the 
intervening years. Many isotope separation theory papers on gas 
centrifuges (2-4) apply the integral formulas to assumed idealized flow 
profiles. Only recently have mathematically derived and physically 
reasonable profiles been introduced into the gas centrifuge separation 
theory, like the high speed thermal drive profile efficiency of 7.2/A2 due to 
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384 BERGER 

Onsager (5). More recently Berger has analytically derived Cohen’s 
integral separation parameters for numerous new countercurrent long 
bowl and 2-D flow fields, such as long bowl sources and sinks, thermal 
drive and sources and sinks for a long rotating annulus, a thermally 
driven tapered rotor, etc. At the other extreme, computational fluid 
dynamicists do a lot of expensive number crunching on big computers 
for the separative work units (SWUs) and/or Cohen’s E and M, which 
might be appropriately called numerical isotope separation theory. 

Such detailed analysis of the binary isotope separation process in a gas 
centrifuge really involves simulating the advective-diffusion equation 
(pde) with pressure diffusion for a prescribed internal flow field. 
Alternatively, one may simply solve the Cohen-Onsager gradient equa- 
tion (ode). Then, from a mass balance and a value balance, the separative 
work can be calculated, but sometimes one may just want to determine 
the value of Cohen’s flow profile efficiency. It is here that we can have the 
most dramatic effect. 

Recall that in cylindrical coordinates Cohen’s E and M for a 
countercurrent gas centrifuge are (4), 

(“2nrcvdr 

(2) 
J O  M =  

I I2 
rcDABdr 2nFvdr [ dr I” ([ ) ]  

r’cvdr‘ 
rCDAB 

where r is the radical coordinate direction, r, is the bowl radius, c is the 
total molar concentration, v is the axial velocity, DAB is the binary 
diffusion coefficient, and ro is the crossover point. E and M can be written 
nondimensionally as 
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where 

powdx‘ 

1 “  
I,* - - I, IXx)dx 

2A2 
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(5) 

where curvature is neglected (i.e., pancaked) using (6) x % U’(1 - q). 
Even in the pancake approximation, complex formulas for E and M 

usually result from exact integrations of separation theory for realistic 
flow fields. Obviously the situation for combined drives is much worse 
than for just pure drives. This author has often wished for a useful 
approximation to separation theory which went beyond simply pan- 
caking. Undoubtedly it would be worth giving up some accuracy for more 
simplicity, especially since the first time the complete separation theory is 
applied to a new problem it is likely to contain mistakes. (This happens 
all too often to the author.) Perhaps one could approximate the required 
flow integrals by a simplified integration rule, e g ,  method of steepest 
decent. Our prior attempts to truncate expressions for pure axial source/ 
sink drives invariably led to artificial singularities and zeroes due to the 
terms thrown away. While considerable simplification is achieved for 
asymptotic approximations of sources and sinks, too much detail is lost 
in the process. 

Recall that for the so-called “two-shell” profile (7) the optimal location 
of the return flow is ,5335 times the machine radius, corresponding to 
E = 315. From the physics of the flow it seems reasonable that to 
improve the separative performance we must not only push the return 
flow high into the atmosphere but also push the velocity crossover point 
higher in the atmosphere. We take this notion as the crux of our 
hypothesis and note that the crossover point has some unusual proper- 
ties. For example, a pure axial source/sink placed at the thermal drive 
crossover point produces zero flow profile efficiency and near zero flow, 
but until nowxo has had little use in gas centrifuge separation theory. The 
only use known to the author is in computing the recirculation rate L (4). 

‘0 
L = 2 n L  powrdr 
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386 BERGER 

where ro is the dimensional crossover point. Notice that this unnecessary 
usage gets into trouble when there are multiple crossover points, which is 
inevitable in the real world. 

For any linear combination of drive perturbations, Cohen’s E can be 
expressed as something over A2,  that is, 

where the constant K depends upon the type of drive(s). Olander (8) gives 
a similar formula in his own notation. The resulting problem is, of 
course, to estimate the single parameter K .  Ordinarily one is interested in 
maximal SWUs but one may settle for some sort of approximation. 

HYPOTHESIS 

Consider the following simple rule to approximate the binary isotopic 
separation process in a high speed gas centrifuge and approximately 
solve the stated parameter estimation problem for K.  

Rule of Thumb: For a single recirculating cell, in the absence of 
discontinuities, discrete sources and sinks, and negligible Ekman endcap 
boundary layers, the flow profile efficiency is directly proportional to the 
velocity crossover point at a fixed stratification. Or, more precisely, 

where T is the separation “constant,” xo is the hydrodynamical axial 
velocity crossover point due to a combination of drives, and A is the 
stratification parameter. 

In cylindrical coordinates, Eq. (10) can be rewritten as 

where qo is the dimensionless radial crossover point. 
Application of this rule to exceptional cases may of course lead to gross 
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errors, but careful and judicious use of Eq. (10) might still be possible. For 
instance, treatment of multiple zeroes simply requires using the mini- 
mum x,, in place of xg, since flow fields with multiple zeroes often have 
near zero E due to remixing. T is defined by reference to a convenient 
solution, and since the thermal drive is of some historical significance 
(ie., probably the first nonwheel flow hydrodynamical solution), we 
select it as the basis. But this is really arbitrary and doesn’t matter much 
because any other reasonable reference would do more or less as well. So, 
using Onsager’s thermal drive efficiency, one finds 

I 9  
I .L TE- = 5.73 1.256 

where 1.256 is the nontrivial root of the thermal drive velocity profile, 

(1 + 2 ~ ~ ) e - ~ O  - 1 = 0 (13) 

Then the usual optimization problem may be approximated as 

-A 2r& (14) 

which is equivalent to 

which completely eliminates the numerous separation integrals. Although 
xo is determined by the roots of a nonlinear, algebraic, transcendental 
equation, it is a much simpler numerics problem than we began with. 
Even constrained and unconstrained optimizations are possible, but 
CAVEAT CALCULATOR. It is strongly recommended that the resulting 
hydrodynamics be inspected for “reasonableness,” and rigorous numeri- 
cal or analytical calculation of E be made as a check. When this simple 
technique works it reduces the optimization problem to at most one or 
two detailed calculations of E.  Because this is only a simple “rule of 
thumb,” one must examine the final prediction for both validity and 
accuracy, as something may have gone wrong between beginning and 
end. Also, it is obvious that the integral calculation of Cohen’s M remains, 
if one wants M. Of course, for optimal separations, e, = M2/(M2 + 1) is 
generally near unity. 
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D E Rl VAT1 0 N 

The following two simple derivations should shed some light on these 
ideas. I suppose that it might be possible to justify our hypothesis 
rigorously or something akin to it without assuming the profile vanishes 
beyond xO. This is not an easy matter, so we leave this open question as an 
exercise for the interested reader. While these two derivations predict 
somewhat different values of K,  the important point here is the 
appearance of x0 in the formula. 

Simple Derivation 1 

Suppose 

p0wdx' = - 2Az[ - 2x0 - X (  1 - ~ U ( X  - x O ) ) ]  (1 7 )  

Thus, 

Simple Derivation 2 (9) 

Suppose 

0, 2XOQX Q 
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Thus E is 

8x0 - 2 . 6 6 7 ~ 0  
3A2 A 2  

TEST OF HYPOTHESIS 

Tables 1-3 summarize some comparisons of our hypothesis with exact 
integrations of E for several quite different drive mechanisms. The fluid 
dynamics used here derive from the linearized Navier-Stokes equations 
and are exact solutions (sometimes in the perturbation sense) to 
Onsager’s equation (6). For the most part they are taken from un- 

TABLE 1 
Hypothesis Test 1 

Drivea XO A ~ E ,  A ~ E ~  % Error 

- TD 1.256 1.2 7.2 

worn 1.6 9 9.17 2 
OPT(TD + Worn) 1.625 108/11 = 9.818 9.315 -5 

U0,b 1.6 9 9.17 2 
(TO - 2 Qm 1.376 7.588 7.885 4 
TRl 1.31 7.18 7.22 0.5 
TR2 1.21 7.18 7.22 0.5 

‘TD = thermal drive; Worn = uniform axial source/sink at x = to; Uo, = nonuniform 
radial source/sink atx = a; (To - 2V0), = nonunifoim heat and drag source/sink atx = m; 
TR1 = converging tapered rotor, EJJ = .05, TD (10); TR2 = diverging tapered rotor, EJJ 

= -.05, TD (10). 
b powwo, = pO~LIOm, see text discussion. 
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BERGER 390 

TABLE 2 
Hypothesis Test 2: TD Rotating Annulus with No Slip at xT 

XT XO A ~ E ~  A ~ E ~  % Error 

Q) 

8 
6 
4 

1.256 7.2 7.2 0 
1.1481 6.44 6.5815 2 
1.1111 5.88 6.3694 8 
1 4.61 5.7325 24 

published works of the author. The subscript T indicates the so-called 
“exact” theoretical efficiency, while the subscript H indicates the hypo- 
thetical value. The notation for the drives is defined in the Table 1 
footnotes. 

These results are represented in a scatter graph, Fig. 1. In the range of 
validity, our rule has produced a maximum absolute relative error of 
about 8%. Surprisingly, the result that 

was discovered using our simple rule. So based on these comparisons, we 
consider our rule to be “reasonably” accurate and surprisingly robust, but 
it is still just a rule and not a theory. As noted earlier, multiple crossovers 
present difficulties. For example, the profile for optimum Eae, for 
combined thermal-1 axial source/sink drive has three nontrivial cross- 
over points. So here our simple model is not of much use, but then, due to 
all the noise, who would guess that this profile is really very efficient 
(E = 9.87/A2)? Alas, in such complex cases there is no substitute for a 
detailed analysis. 

TABLE 3 
Hypothesis Test 3: TD Rotating Annulus with Free Slip at xT 

XT XO A ~ E ,  A ~ E ~  % Error 

03 1.256 7.2 1.2 0 
8 1.256 7.11 1.2 1 
6 1.256 6.72 7.2 7 
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5 6 7 8 9 10 

A ~ E ~  

FIG. 1. Scatter graph. 

SYMBOLS 

stratification parameter - [E7”2 
rotor radius 
binary diffusion coefficient 
Cohen’s E 
circulation efficiency, M2/(M2 + 1) 
flow integrals 
Cohen’s M 
molecular weight 

Po V& Peclet number ___ 
PODAB 

universal gas constant 
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392 BERGER 

radial coordinate 
separative work units 
reference temperature 
wall velocity 
scale heights variable 
annular gap width in scale heights 
velocity crossover point 
rla 
wall density 
dimensionless axial mass velocity 
separation “constant” 
asymptotically equal 
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