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A Rule of Thumb for Binary Isotope Separations in a
Gas Centrifuge

M. H. BERGER*

THEORY DEPARTMENT

OPERATIONS ANALYSIS AND PLANNING DIVISION
OAK RIDGE GASEOUS DIFFUSION PLANT

OAK RIDGE. TENNESSEE 37830

Abstract

A simple hypothetical model of the binary isotope separation process in a
modern countercurrent Gas Centrifuge is proposed. Like the usual Cohen-
Onsager separation theory, internal fluid dynamics are obviously involved. But
unlike that theory it completely obviates the flow integrals for Cohen’s E, thereby
allowing an immediate estimate of the flow efficiency of a given design by visual
inspection of the flow field. At times this should be checked later by the usual
analyses. To shed some light on this idea, derivations for two simple assumed
idealized hydrodynamics are given, but a rigorous proof remains an open
question. Then our hypothesis is tested against a battery of about 10 new “exact”
formulas for E based upon analytical solutions to several variants of Onsager's
pancake equation and is found to be “reasonably” accurate and surprisingly
robust. Finally, some limitations of our rule arc explored.

INTRODUCTION

Isotope separation theory is a fairly old subject, dating back to
Onsager, Furry, Jones, Cohen, etc. (1), and has changed little over the
intervening years. Many isotope separation theory papers on gas
centrifuges (2-4) apply the integral formulas to assumed idealized flow
profiles. Only recently have mathematically derived and physically
reasonable profiles been introduced into the gas centrifuge separation
theory, like the high speed thermal drive profile efficiency of 7.2/A% due to
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Onsager (5). More recently Berger has analytically derived Cohen’s
integral separation parameters for numerous new countercurrent long
bowl and 2-D flow fields, such as long bowl sources and sinks, thermal
drive and sources and sinks for a long rotating annulus, a thermally
driven tapered rotor, etc. At the other extreme, computational fluid
dynamicists do a lot of expensive number crunching on big computers
for the separative work units (SWUs) and/or Cohen’s E and M, which
might be appropriately called numerical isotope separation theory.

Such detailed analysis of the binary isotope separation process in a gas
centrifuge really involves simulating the advective-diffusion equation
(pde) with pressure diffusion for a prescribed internal flow field.
Alternatively, one may simply solve the Cohen-Onsager gradient equa-
tion (ode). Then, from a mass balance and a value balance, the separative
work can be calculated, but sometimes one may just want to determine
the value of Cohen’s flow profile efficiency. It is here that we can have the
most dramatic effect.

Recall that in cylindrical coordinates Cohen’s £ and M for a
countercurrent gas centrifuge are (4),

7'2 r 2
4<f rdrfr’cvdr’)
0 0
r

B n d r 2 (1)
cDABrgj (J’ r’cvdr')
o TeDyp o
0
f 2nrevdr
_ 0
M = r 12 ()
f reD  pdr
0

2nf Orcvdr
0 dr

r 2
f r'evdr’
reD g o

where r is the radical coordinate direction, r, is the bowl radius, c is the
total molar concentration, v is the axial velocity, D,z is the binary
diffusion coefficient, and , is the crossover point. E and M can be written
nondimensionally as

_ 4y’

M = 22Pe z(IX1)? (4
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where
1 ® ,
If(x) ~ Ef powdx (5)
1 @©
Iy~ —2f I(x)dx (6)
247 J,
1 ® 5
It~ — | [Ifx)]"dx (7
24% J,

where curvature is neglected (i.e., pancaked) using (6) x = 24%(1 — 7).

Even in the pancake approximation, complex formulas for £ and M
usually result from exact integrations of separation theory for realistic
flow fields. Obviously the situation for combined drives is much worse
than for just pure drives. This author has often wished for a useful
approximation to separation theory which went beyond simply pan-
caking. Undoubtedly it would be worth giving up some accuracy for more
simplicity, especially since the first time the complete separation theory is
applied to a new problem it is likely to contain mistakes. (This happens
all too often to the author.) Perhaps one could approximate the required
flow integrals by a simplified integration rule, e.g., method of steepest
decent. Our prior attempts to truncate expressions for pure axial source/
sink drives invariably led to artificial singularities and zeroes due to the
terms thrown away. While considerable simplification is achieved for
asymptotic approximations of sources and sinks, too much detail is lost
in the process.

Recall that for the so-called “two-shell” profile (7) the optimal location
of the return flow is .5335 times the machine radius, corresponding to
E = 815. From the physics of the flow it seems reasonable that to
improve the separative performance we must not only push the return
flow high into the atmosphere but also push the velocity crossover point
higher in the atmosphere. We take this notion as the crux of our
hypothesis and note that the crossover point has some unusual proper-
ties. For example, a pure axial source/sink placed at the thermal drive
crossover point produces zero flow profile efficiency and near zero flow,
but until now x, has had little use in gas centrifuge separation theory. The
only use known to the author is in computing the recirculation rate L (4).

L= 2nf "ogwrdr (8)
0
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where r, is the dimensional crossover point. Notice that this unnecessary
usage gets into trouble when there are multiple crossover points, which is
inevitable in the real world.

For any linear combination of drive perturbations, Cohen’s E can be
expressed as something over 4% that is,

> f ") dx]? .
o~ - K ©)

A2 f ") dx

where the constant K depends upon the type of drive(s). Olander (8) gives
a similar formula in his own notation. The resulting problem is, of
course, to estimate the single parameter K. Ordinarily one is interested in
maximal SWUs but one may settle for some sort of approximation.

HYPOTHESIS

Consider the following simple rule to approximate the binary isotopic
separation process in a high speed gas centrifuge and approximately
solve the stated parameter estimation problem for K.

Rule of Thumb: For a single recirculating cell, in the absence of
discontinuities, discrete sources and sinks, and negligible Ekman endcap

boundary layers, the flow profile efficiency is directly proportional to the
velocity crossover point at a fixed stratification. Or, more precisely,

E=-20 (10)

where T is the separation “constant,” x, is the hydrodynamical axial
velocity crossover point due to a combination of drives, and 4 is the
stratification parameter.

In cylindrical coordinates, Eq. (10) can be rewritten as

E=27(1-n) (1)

where 1, is the dimensionless radial crossover point.
Application of this rule to exceptional cases may of course lead to gross
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errors, but careful and judicious use of Eq. (10) might still be possible. For
instance, treatment of multiple zeroes simply requires using the mini-
mum X, in place of x,, since flow fields with multiple zeroes often have
near zero E due to remixing. T is defined by reference to a convenient
solution, and since the thermal drive is of some historical significance
(i.e., probably the first nonwheel flow hydrodynamical solution), we
select it as the basis. But this is really arbitrary and doesn’t matter much
because any other reasonable reference would do more or less as well. So,
using Onsager’s thermal drive efficiency, one finds

_ 72
~ 1256

where 1.256 is the nontrivial root of the thermal drive velocity profile,

=5.73 (12)

(14 2x)e™—1=0 (13)

Then the usual optimization problem may be approximated as

MAX,,. E (14)
which is equivalent to
MAX 5., %o (15)

which completely eliminates the numerous separation integrals. Although
X, is determined by the roots of a nonlinear, algebraic, transcendental
equation, it is a much simpler numerics problem than we began with.
Even constrained and unconstrained optimizations are possible, but
CAVEAT CALCULATOR. It is strongly recommended that the resulting
hydrodynamics be inspected for “reasonableness,” and rigorous numeri-
cal or analytical calculation of E be made as a check. When this simple
technique works it reduces the optimization problem to at most one or
two detailed calculations of E. Because this is only a simple “rule of
thumb,” one must examine the final prediction for both validity and
accuracy, as something may have gone wrong between beginning and
end. Also, it is obvious that the integral calculation of Cohen’s M remains,
if one wants M. Of course, for optimal separations, e, = M*/(M?* + 1) is
generally near unity.
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DERIVATION

The following two simple derivations should shed some light on these
ideas. 1 suppose that it might be possible to justify our hypothesis
rigorously or something akin to it without assuming the profile vanishes
beyond x,. This is not an easy matter, so we leave this open question as an
exercise for the interested reader. While these two derivations predict
somewhat different values of K, the important point here is the
appearance of x, in the formula.

Simple Derivation 1
Suppose

pow = 44%(1 — 2U(x — xg)), 0 <x <2x,
0, 2x, <x < © (16)

Ir=ﬁ f powdx’ = —247[~2x, = x(1 = 2U(x = xg))]  (17)

X

1 xg
I¥=——| TItx=3x2 (18)
24% ),
2x 524>
= WLJ' "(2dx = X} (19)
24 J,
Thus,
_ 27xy _ 2.08x,
T 13477 42 (20)

Simple Derivation 2 (9)

Suppose

PoW = —4A4sin2—x, 0 <x < 2x
0

0, X <™ 21
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— 2
Ir=ﬂ[-1+cos1’f] (22)
T Xg
2x3
o 7Y
== (23)
64}
Ir= =3 (24)
Thus F is
8xy _ 2.667x,
3A2 - A2 (25)

TEST OF HYPOTHESIS

Tables 1-3 summarize some comparisons of our hypothesis with exact
integrations of E for several quite different drive mechanisms. The fluid
dynamics used here derive from the linearized Navier-Stokes equations
and are exact solutions (sometimes in the perturbation sense) to
Onsager’s equation (6). For the most part they are taken from un-

TABLE 1
Hypothesis Test 1
Drive® Xo AEr AEy % Error
TD 1256 72 72 -
Ws., 1.6 9 9.17 2
OPT(TD + Wy, ) 1.625 108/11 = 9.818 9315 -5
Up? L6 9 9.17 2
To— 2V 1.376 7.588 7.885 4
TRI1 131 7.18 722 0.5
TR2 121 7.18 722 0.5

“TD = thermal drive; W,_ = uniform axial source/sink at x = o; U = nonuniform
radial source/sink atx = w; (Ty ~ 2V) = nonuniform heat and drag source/sink at x = co;
TRI1 = converging tapered rotor, gy = .05, TD (10); TR2 = diverging tapered rotor, gy
= =05, TD (10).

PoWw, = Powyy . See text discussion.



13: 20 25 January 2011

Downl oaded At:

390 BERGER

TABLE 2
Hypothesis Test 2: TD Rotating Annulus with No Slip at xy
xr Xo A’Ep AEy % Error
) 1.256 72 72 0
8 1.1481 6.44 6.5815 2
6 1.1111 5.88 6.3694 8
4 1 461 5.7325 24

published works of the author. The subscript 7 indicates the so-called
“exact” theoretical efficiency, while the subscript H indicates the hypo-
thetical value. The notation for the drives is defined in the Table 1
footnotes.

These results are represented in a scatter graph, Fig. 1. In the range of
validity, our rule has produced a maximum absolute relative error of
about 8%. Surprisingly, the result that

Ey,

om_EU

00

(26)

was discovered using our simple rule. So based on these comparisons, we
consider our rule to be “reasonably” accurate and surprisingly robust, but
it is still just a rule and not a theory. As noted earlier, multiple crossovers
present difficulties. For example, the profile for optimum E-e. for
combined thermal-1 axial source/sink drive has three nontrivial cross-
over points. So here our simple model is not of much use, but then, due to
all the noise, who would guess that this profile is really very efficient
(E = 9.87/4%? Alas, in such complex cases there is no substitute for a
detailed analysis.

TABLE 3
Hypothesis Test 3: TD Rotating Annulus with Free Slip at xy
xr Xo A%Er AEy % Error
) 1.256 7.2 72 0
8 1.256 7.11 72 1

6 1.256 6.72 72 7
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FIG. 1. Scatter graph.
SYMBOLS
2 |12
A stratification parameter *
2RT,

a rotor radius

D,y binary diffusion coefficient

E Cohen’s E

e, circulation efficiency, M*/(M* + 1)

LL L IR flow integrals

M Cohen’s M

MW molecular weight

Vv,
Pe Peclet number Do’
Poll4p
R universal gas constant

10
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r radial coordinate

SWUs separative work units

T, reference temperature

V, wall velocity

x scale heights variable

Xr annular gap width in scale heights
Xo,Mo velocity crossover point

n r/a

P wall density

PoW dimensionless axial mass velocity
T separation “constant”

~ asymptotically equal
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